next up previous
Next: 並列共振回路のエネルギー収支 Up: 共振回路 Previous: RLC 直列共振回路のエネルギー収支

並列共振回路

電源電圧を $v=v_0sin\omega t$  抵抗、コイル、コンデンサーの電流を$i_r,i_L,i_c$とする

$\displaystyle i_R$ $\textstyle =$ $\displaystyle \frac{{v_0 }}{R}\sin \omega t$ (32)
$\displaystyle L\frac{{di}}{{dt}}$ $\textstyle =$ $\displaystyle v  Lの回路方程式$ (33)
$\displaystyle \frac{{di}}{{dt}}$ $\textstyle =$ $\displaystyle \frac{v}{L} = \frac{{v_0 \sin \omega t}}{L}$ (34)
$\displaystyle i_L$ $\textstyle =$ $\displaystyle \int {\frac{di}{dt}dt = \frac{1}{L}\int {v_0 \sin \omega t }} dt$ (35)
$\displaystyle i_L$ $\textstyle =$ $\displaystyle - \frac{{v_0 }}{{\omega L}}\cos \omega t = \frac{{v_0 }}{{\omega L}}\sin \left( {\omega t - \frac{\pi }{2}} \right)$ (36)


$\displaystyle \frac{q}{C}$ $\textstyle =$ $\displaystyle v Cの回路方程式 i = \frac{{dq}}{{dt}} 連続方程式$ (37)
$\displaystyle i$ $\textstyle =$ $\displaystyle C\frac{{dv}}{{dt}} = C\frac{d}{{dt}}\left( {v_0 \sin \omega t} \right)$ (38)
$\displaystyle i_C$ $\textstyle =$ $\displaystyle \omega Cv_0 \cos \omega t = \frac{{v_0 }}{{{\raise0.7ex\hbox{$1$}...
...lower0.7ex\hbox{${\omega C}$}}}}\sin \left( {\omega t + \frac{\pi }{2}} \right)$ (39)


$\displaystyle I$ $\textstyle =$ $\displaystyle i_R + i_C + i_L$ (40)
  $\textstyle =$ $\displaystyle \frac{{v_0 }}{R}\sin \omega t + \omega Cv_0 \cos \omega t - \frac{{v_0 }}{{\omega L}}\cos \omega t$ (41)
  $\textstyle =$ $\displaystyle \frac{{v_0 }}{R}\sin \omega t + v_0 \left( {\omega C - \frac{1}{{\omega L}}} \right)\cos \omega t$ (42)
$\displaystyle I$ $\textstyle =$ $\displaystyle v_0 \sqrt {\left( {\frac{1}{R}} \right)^2 + \left( {\omega C - \frac{1}{{\omega L}}} \right)^2 } \sin \left( {\omega t + \delta } \right)$ (43)
$\displaystyle \tan \delta$ $\textstyle =$ $\displaystyle \frac{{\omega C - \frac{1}{{\omega L}}}}{{\frac{1}{R}}}$ (44)
$\displaystyle I_0$ $\textstyle =$ $\displaystyle v_0 \sqrt {\left( {\frac{1}{R}} \right)^2 + \left( {\omega C - \frac{1}{{\omega L}}} \right)^2 }$ (45)
$\displaystyle I_{eff}$ $\textstyle =$ $\displaystyle V_{eff} \sqrt {\left( {\frac{1}{R}} \right)^2 + \left( {\omega C - \frac{1}{{\omega L}}} \right)^2 }$ (46)
$\displaystyle Z$ $\textstyle =$ $\displaystyle \frac{{V_{eff} }}{{I_{eff} }} = \frac{1}{{\sqrt {\left( {\frac{1}{R}} \right)^2 + \left( {\omega C - \frac{1}{{\omega L}}} \right)^2 } }}$ (47)
$\displaystyle I_{eff}$ $\textstyle =$ $\displaystyle \frac{{I_0 }}{{\sqrt 2 }}  V_{eff} = \frac{{v_0 }}{{\sqrt 2 }}$ (48)
$\displaystyle \omega C$ $\textstyle =$ $\displaystyle \frac{1}{{\omega L}}$ (49)
$\displaystyle \omega ^2$ $\textstyle =$ $\displaystyle \frac{1}{{LC}}$ (50)
$\displaystyle \omega$ $\textstyle =$ $\displaystyle \frac{1}{{\sqrt {LC} }}$ (51)
$\displaystyle f_0$ $\textstyle =$ $\displaystyle \frac{1}{2\pi \sqrt {LC}}   共振周波数$ (52)

共振時には電圧が最大になる。
next up previous
Next: 並列共振回路のエネルギー収支 Up: 共振回路 Previous: RLC 直列共振回路のエネルギー収支
Sadahiko TOKIDA
平成14年6月15日